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Questionnaire and structural imaging
data accurately predict headache
improvement in patients with acute
post-traumatic headache attributed to
mild traumatic brain injury

Lingchao Mao1, Jing Li1, Todd J Schwedt2,3,4, Visar Berisha3,4,5,
Devin Nikjou5, Teresa Wu3,4,6, Gina M Dumkrieger2 ,
Katherine B Ross7 and Catherine D Chong2,3,4

Abstract

Background Our prior work demonstrated that questionnaires assessing psychosocial symptoms have utility for

predicting improvement in patients with acute post-traumatic headache following mild traumatic brain injury. In this

cohort study, we aimed to determine whether prediction accuracy can be refined by adding structural magnetic res-

onance imaging (MRI) brain measures to the model.

Methods Adults with acute post-traumatic headache (enrolled 0–59 days post-mild traumatic brain injury) underwent

T1-weighted brain MRI and completed three questionnaires (Sports Concussion Assessment Tool, Pain Catastrophizing

Scale, and the Trait Anxiety Inventory Scale). Individuals with post-traumatic headache completed an electronic head-

ache diary allowing for determination of headache improvement at three- and at six-month follow-up. Questionnaire

and MRI measures were used to train prediction models of headache improvement and headache trajectory.

Results Forty-three patients with post-traumatic headache (mean age¼ 43.0, SD¼ 12.4; 27 females/16 males) and

61 healthy controls were enrolled (mean age¼ 39.1, SD¼ 12.8; 39 females/22 males). The best model achieved cross-

validation Area Under the Curve of 0.801 and 0.805 for predicting headache improvement at three and at six months.

The top contributing MRI features for the prediction included curvature and thickness of superior, middle, and inferior

temporal, fusiform, inferior parietal, and lateral occipital regions. Patients with post-traumatic headache who did not

improve by three months had less thickness and higher curvature measures and notably greater baseline differences in

brain structure vs. healthy controls (thickness: p< 0.001, curvature: p¼ 0.012) than those who had headache

improvement.

Conclusions A model including clinical questionnaire data and measures of brain structure accurately predicted

headache improvement in patients with post-traumatic headache and achieved improvement compared to a model

developed using questionnaire data alone.
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Introduction

Post-traumatic headache (PTH) is one of the most
common symptoms following mild traumatic brain
injury (mTBI) (1). Whereas for some patients head-
aches resolve quickly, for others, PTH can continue
for months or years, causing significant disability and
health care burden (2,3). This uncertainty about head-
ache recovery adds to patient anxiety and is problem-
atic for clinicians when determining treatment
strategies.

Previously we investigated the utility of clinical
questionnaire answers for predicting headache
improvement/non-improvement for patients with
acute PTH. Our results indicated that trimming down
an extensive headache questionnaire battery to only
three questionnaires that assess psychosocial symptoms
(Sports Concussion Assessment Tool-symptom check-
list, Pain Catastrophizing Scale, and the Trait
Anxiety Inventory Scale [4–8]) achieved reasonable
cross-validation accuracy for predicting headache
improvement at three months (0.72 AUC) and at six
months (0.77 AUC) following mTBI (9).

The objective of this follow-up study was to deter-
mine whether the prediction accuracy for headache
improvement/non-improvement at three months and
at six months could be improved when combining
these three questionnaire subscores and summary
scores with measures of regional brain volume, thick-
ness, mean curvature, and area from T1-weighted mag-
netic resonance imaging (MRI). In addition, we
investigated the accuracy of imaging and questionnaire
data for predicting individuals’ headache patterns (or
headache trajectories) over the first three months post-
enrollment. We included a healthy control cohort in
this study to interpret group differences in the brain
structure components derived from MRI data between
those who had headache improvement and those who
did not have headache improvement.

Methods

Subject enrollment

All individuals were enrolled from the Mayo Clinic in
Arizona or the Phoenix VA Health Care System
between 2019-2022. Participants provided written
informed consent prior to participation. All partici-
pants were between the age of 18–70. Inclusion/exclu-
sion criteria for PTH: Individuals were enrolled
between 0–59 days post-mTBI. Individuals with a his-
tory of moderate or severe TBI were excluded from
study participation. Consistent with ICHD-3 diagnostic
criteria for PTH, those with a history of headache prior
to mTBI were eligible for enrollment. All individuals

had headaches that began or worsened within seven

days of injury and met criteria for acute PTH attributed

to mTBI in accordance with the 2018 ICHD-3 diagnos-

tic criteria (10). Criterion B-D were used to phenotype

the headaches. Aura was defined using a headache ques-

tionnaire. Inclusion/exclusion criteria for healthy con-

trols: Individuals were enrolled during their normal

state of health. Occasional tension-type headache (<3
tension-type headaches per month) was allowed.

Individuals with history of neurological disorder

(including migraine) were excluded. A subset of individ-

uals included in this study were included in prior pub-

lications (11), yet this is the primary analysis aimed at

predicting headache improvement in individuals with

PTH based on clinical questionnaires and imaging

data completed within the first couple of months

post-mTBI.

Questionnaires

All individuals completed the following three question-

naires at the time of enrollment: the Sports Concussion

Assessment Tool (SCAT-5)-Symptom Checklist, the

Pain Catastrophizing Scale (PCS), and the TRAIT

Anxiety Inventory Scale (5–7). Based on our previously

published results (9) the following five variables were

the most predictive of headache improvement and were

thus included in the models of this study: SCAT-5

Symptom Evaluation: total score and total number of

symptoms, PCS: total score and subdomain score for

helplessness, and Trait anxiety: total score.

Headache diary

Individuals with PTH completed an electronic daily

headache diary over the first three months after enroll-

ment and over 30 days prior to their six-month follow-

up visit. The headache diary was used to determine

headache improvement/non-improvement at three

months and at six months follow-up. Headache

improvement was calculated using a novel rule that

considered (i) an individuals’ headaches prior to the

most recent mTBI (pre-TBI headaches), and (ii) indi-

viduals’ headaches after the most recent mTBI

(post-TBI headaches). Specifically, an individual with
pre-existing headaches before mTBI was considered to

have ‘headache improvement’ if the number of addi-

tional headaches (i.e., difference between post-TBI

headaches and pre-TBI headaches) was reduced by

50% or more, OR if the additional headaches reduced

to 2.5 or less at the time of assessment. An individual

with no pre-TBI headaches was considered to have

‘headache improvement’ if the individual’s headaches

in the first month post-enrollment was reduced by 50%

or more at the time of assessment. We refer interested
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readers to Mao et al. (9) for more details of this

algorithm.
In addition to the binary outcome of headache

improvement/non-improvement, we aimed to predict

individuals’ trajectories of headache frequency over

the course of three months post-enrollment. This out-

come variable, which we refer to as the headache fre-

quency trajectory, was extracted as a continuous

variable as a function of time, yt, for t¼ 1. . .84 days

(three months). The headache frequency trajectory at

time t was computed as the percentage of days with any

headaches within the seven-day window starting at

day t. The headache frequency trajectory complements

the binary headache assessment with more temporal

granularity of headache patterns over time.

Image acquisition and post-processing

Imaging was acquired at Mayo Clinic using a 3-Tesla

Siemens Scanner (Siemens Magnetom Skyra, Erlangen,

Germany) and a 20-channel head coil with the follow-

ing parameters:
T1-weighted imaging: TE¼ 3.03ms, TR¼ 2400ms,

voxel size¼ 1� 1� 1mm3, FOV¼ 256� 256mm, flip

angle¼ 8 degrees. T2-weighted imaging: TE¼ 84ms,

TR¼ 6800ms, voxel size¼ 1� 1� 4mm3, flip angle¼
150 degrees. Structural MRIs were reviewed by a

Neurologist and Neuroradiologist. Individuals with

abnormal imaging (n¼ 0) were excluded from data

analysis.
T1-weighted imaging was post-processed using the

‘recon-all’ pipeline of the imaging analysis software

FreeSurfer, Version 7.2 (http://surfer.nmr.mgh.har

vard.edu/) (12–16). All T1-weighted imaging was post-

processed using a high-performance computing cluster

at the National Center for Supercomputing

Applications (NCSA). Data were manually checked

for post-processing errors prior to inclusion in the

final analysis. Left and right hemisphere regional esti-

mates of brain thickness (total number of regions¼ 68),

brain curvature (total number of regions¼ 68), brain

area (total number of regions¼ 68), and brain cortical

and subcortical volume (total number of regions¼ 86)

were automatically extracted from T1-weighted MRI

using the FreeSurfer Desikan-Killiany atlas, for auto-

matically segmenting and labeling a total of 290 imaging

features. Regional estimates of brain volume and area

were adjusted for head size by dividing each measure by

the estimated total Intracranial Volume (eTIV) (17).

Statistical analysis

Patient characteristics were summarized by computing

the mean and standard deviation for continuous vari-

ables and frequency counts for categorical variables.

Group differences in age and sex between PTH patients
and HC were assessed using two-sided t-test and chi-
square test. Significance level of 0.05 was used in all
statistical tests. Features extracted from clinical ques-
tionnaires and structural MRI were used to develop
machine learning models to classify headache improve-
ment and to model headache frequency trajectory,
which we discuss in detail next. An overview of our
analysis pipeline is shown in Figure 1.

MRI feature modelling. As cohort variabilities of age and
sex have an effect on measures of brain structure (17),
we used confound regression (18) to remove the brain
differences related to age and sex to better study the
contribution of imaging features to the prediction of
headache improvement. Specifically, imaging data of
healthy controls were used to fit a linear regression
on each thickness, volume, area, and curvature mea-
sure with age and sex as regressors. The estimated
regression coefficients were then applied to remove
the effect of age and sex from the imaging data of
PTH patients. The resulting residuals were used as
inputs for machine learning models downstream.

Dimension reduction. In our study, the number of fea-
tures (290 imaging measures and five questionnaire
variables) exceeded the number of participants, which
can lead to an overfitted model (19). Thus, partial least
squares (PLS) was used to find lower-dimensional and
predictive components of the data. PLS is a common
method for dimension reduction with capability to
handle high-dimensional problems with correlated var-
iables and a limited number of observations (20).
Compared to Principal Component Analysis (PCA),
PLS can provide more supervision by pooling features
into components that are correlated with the classes of
cohorts, which is desired given the complexities of
structural MRI data. We first standardized imaging
and questionnaire variables across the PTH cohort
then trained PLS models for questionnaire variables,
thickness, mean curvature, volume, and area, respec-
tively. We retained only the first component from each
PLS model as inputs into the prediction pipeline
because i) the remaining components contain less infor-
mation about the original data and are less predictive
than the first component, and ii) we wanted to mini-
mize overfitting risk by using fewer predictors. Take
thickness measures as an example, the thickness com-
ponent obtained from PLS is a linear combination of
original thickness measures and can be interpreted as a
‘super-thickness’. Note that ‘super-thickness’ is not on
the same scale as original thickness measures because
of standardization. For interpretation convenience,
PLS was trained using the headache improvement vs
non-improvement label at three months and the same
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PLS loadings were used in three-month, six-month, and
functional regression models. To internally validate the
results, PLS was trained via the leave-one-out cross-
validation (LOOCV) scheme, i.e., each time the
model was trained using all except one patient and
applied to the out-of-sample patient.

Prediction model of headache improvement at three and at six

months. Logistic regression was used to classify head-
ache improvement/non-improvement using the first
PLS component from questionnaire data, the first

imaging component, age, sex, and enrollment time
post-mTBI (measured in days) as predictors. Logistic
regression was chosen because it can provide probabil-
istic predictions and it is a linear model less prone to
overfitting compared to more complex nonlinear
models. The rationale for re-including age and sex at
the classification stage in addition to the preprocessing
stage of structural brain measures is that age and sex
may also impact the headache improvement outcome
in addition to their effect on brain measures. Prediction
models were trained separately for thickness, mean

Step 1.
Data collection

Step 2. Step 3.
Data processing Machine learning

MRI post-processing and
feature extraction
using Freesurfer

PLS for each set of
imaging features and

clinical features

Classification using PCs
via logistic regression

Modeling headache
trajectory using PCs

via functional regression 

Identification of brain
regions significantly

contributing to each PC

Group comparison of
imaging PCs:

HC vs PTH improved vs PTH not-
improved

Removal of effect of age and
sex from imaging features

using regression on HC data

Extraction of five scored items
from questionnaires
based on prior study

Assessment of headache
improvement at 3 & at 6

months

Extraction of headache
trajectory across 3 months

Subject Enrollment
43 PTH and 61 HC

Raw T1-
weighted MRI

Headache Diary

Clinical
questionnaires

(SCAT-5, PCS, TRAIT)

Figure 1. Schematic flowchart of the methodology.
MRI, Magnetic Resonance Imaging; PLS, Partial Least Squares; PC, Principal Components; HC, Healthy Controls; PTH, Post-traumatic
Headache; SCAT-5,Sports Concussion Assessment Tool (SCAT-5)-Symptom Checklist; PCS, Pain Catastrophizing Scale; TRAIT, the
TRAIT Anxiety Inventory Scale.
Step 1. HCs and PTH subjects were screened for eligibility and enrolled. T1-weighted MRI were collected for each participant at the
baseline visit. All PTH patients completed three questionnaires and a headache diary to determine headache improvement/non-
improvement at three months and at six months post-enrollment.
Step 2. FreeSurfer was used to extract regional brain estimates from MRI. The standard effect of age and sex were removed from
structural brain measures through confound regression fit on the data of healthy controls. Five variables were extracted from the
questionnaires based on results from a previous study: SCAT-5 Symptom Evaluation-total score and total number of symptoms, PCS-
total score and subdomain score for helplessness, and Trait anxiety-total score. Headache diary data were used to assess headache
improvement/non-improvement at three months and at six months for all PTH patients.
Step 3. The dimension of questionnaire, thickness, curvature, volume, and area features were reduced by retaining the top Partial
Least Squares (PLS) component. Logistic regression was used to classify headache improvement and functional regression was used to
model headache frequency trajectory. Brain regions significantly contributing to each component were identified. Group differences of
the imaging components between HCs vs. PTH patients that had headache improvement and between HCs vs. PTH patients that did
not have headache improvement were statistically tested.
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curvature, volume, and area measures to investigate the
predictive ability of each imaging modality alone.
Then, we pooled imaging measures of the most predic-
tive modalities to obtain the best model. The PLS fol-
lowed by logistic regression pipeline was trained within
the LOOCV scheme and the Area Under the Curve
(AUC) was computed over the LOOCV predictions.

Functional regression model of headache frequency trajectory.

In addition to classifying headache improvement/non-
improvement, we aimed to predict the headache
frequency trajectory over the first three months post-
enrollment. Function-on-scalar regression was used to
model headache frequency trajectory as a functional
response, and PLS components, age, sex, and enroll-
ment time post-mTBI as scalar predictors. The imaging
component and questionnaire component were mod-
eled with functional coefficients assuming their rela-
tionship with headache frequency changes over time.
The functional terms of the model were represented
using penalized cubic splines with five evenly spread
knots (21). Age, sex, and enrollment time post-mTBI
were modeled using scalar coefficients. For convenient
interpretation of the regression coefficients, age was
mean-centered and PLS components were scaled to
[0, 1] within the PTH cohort. Functional regression
was run using the pffr-function from the refund R pack-
age (22).

Group comparison of imaging components. The assumption
behind our modeling pipeline is that PLS can find a
direction to combine the imaging features such that
the resulting component is helpful for or can be used
as a biomarker for predicting headache improvement
versus non-improvement. To further validate this
assumption, we applied the PLS trained on the PTH
cohort as described in the previous section to the imag-
ing data of HCs. If the PLS components are predictive
of headache improvement, we would expect the com-
ponents of healthy subjects to be closer to the compo-
nent of improved PTH than non-improved PTH
patients. Thus, we conducted group comparison
between imaging components of HCs versus the
improved and non-improved subgroups of PTH sub-
jects via two-sided t-test.

Feature contribution analysis. As each PLS component is a
weighted combination of original features, the PLS
loadings can be interpreted as each original feature’s
contribution to the prediction. We considered an orig-
inal feature to be significantly contributing to the com-
ponent if its loading was greater than one standard
deviation above the mean of all loadings. The loadings
of significantly contributing features in a component
were then multiplied by the sign of regression

coefficient of that component to obtain the direction

of contribution to the prediction.

Results

Subject characteristics

A total of 104 participants were enrolled, including

43 individuals with acute PTH (mean age¼ 43.0,

SD¼ 12.4; 27 females/16 males) and 61 healthy con-

trols (mean age¼ 39.3, SD¼ 12.8; 39 females/22

males). There were no significant differences between

groups for age (p¼ 0.145) or sex (p¼ 0.774). Among

the individuals with PTH, 27 patients had a single life-

time mTBI, eight patients had two mTBIs, six patients

had three mTBIs, one patient had four mTBIs, and one

patient had five mTBIs. The mechanism of the most

recent mTBI was as follows: 20 subjects had motor

vehicle accidents, 17 subjects had falls, one subject

had a sports-related injury, and five subjects suffered

mTBIs due to other mechanisms. The timing of PTH

onset relatively to the most recent mTBI was less than

one hour (n¼ 22), between 1–9 hours (n¼ 10), between

10–23 hours (n¼ 2), between 24–47 hours (n¼ 5),

between 48–71 hours (n¼ 2) and between 72 hours to

seven days (n¼ 2). Aura was defined using a headache

questionnaire. Headache phenotypes of PTH were as

follows: 23 patients had migraine-like, nine patients

had probable migraine-like, 11 patients had tension-

type headache-like. Nine patients reported having

aura associated with their PTH. A total of 27 PTH

patients reported having headaches prior to their

most recent mTBI; 14 patients had migraine, three

patients had probable migraine, and 10 patients had

tension-type headaches. Nine patients reported aura

with their prior headaches. At the three-month assess-

ment, 26 individuals with PTH had headache improve-

ment and 17 individuals did not have headache

improvement. At the six months follow-up, 26 of the

PTH patients had headache improvement and

13 patients did not have headache improvement.

Four patients did not have six-month improvement

status due to loss of follow-up or due to individuals

not yet having completed their six-month follow-up

visit at the time of analysis and were excluded from

the six-month model. The clinical characteristics of

individuals with PTH are summarized in Table 1.
One individual with PTH had missing headache

diary data for one seven-day time window. The head-

ache frequency trajectory at this time point was imput-

ed using linear interpolation of the two windows

nearest in time. Two individuals were excluded from

the functional regression analysis because they had

approximately three weeks of headache diary missing.
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There were no missing data for the five questionnaire

variables.

Prediction accuracy of headache improvement at

three and at six months post-enrollment

The prediction model of headache improvement at

three months based on the questionnaire component

coupled with the component from curvature, thickness,

area, and volume features resulted in 0.794, 0.776,

0.629, and 0.548 AUC, respectively (Table 2). The

best performing model was the one that used the two

most predictive imaging components, i.e., curvature

and thickness components, and questionnaire data

achieving 0.801 AUC. Similarly, the prediction model

of headache improvement at six months based on the

questionnaire component together with thickness, cur-

vature, area, and volume components achieved 0.805,

0.731, 0.740, and 0.710 AUC, respectively (Table 3). In

both three-month and six-month predictions, adding

imaging measures significantly improved the prediction

of questionnaire-only models. In the three-month

prediction models, the imaging component was a more

significant predictor (p< 0.01) than the questionnaire

component; whereas in the six-month prediction

models, the questionnaire component was the main

driver of the improved prediction accuracy (p< 0.01)

and the imaging component was a less significant predic-

tor. This is consistent with our previous results that

questionnaire data predicted six-month headache

improvement better than the three-month improvement

(9). Age, sex, and enrollment time post-mTBI were not

significant predictors in all models (p> 0.05).

Brain regions significantly contributing to the

prediction of headache improvement

The significantly contributing regions of curvature and

thickness models are shown in Figure 2 and their 3D

locations are visualized in Figure 3.

Table 1. PTH subject demographics, headache characteristics, and baseline questionnaire scores.

Category Individuals with PTH (n¼ 43) Mean (SD)

Demographics Age (years) 43.0 (12.5)
aSex (f/m) f¼ 27 (62.8%)

m¼ 16 (37.2%)
aEthnicity (Hispanic/Non-Hispanic) Hispanic¼ 5 (11.6%)

Non-hispanic¼ 38 (88.4%)

Education (years) 17.3 (1.3)

Headache Characteristics Headache intensity (average) 4.5 (2.1)
aHeadaches continuous since onset (y/n) y¼ 26 (60.4%)

n¼ 17 (39.6%)

Headache frequency for non-continuous headaches (average) 0.602 (0.352)

Questionnaire Scores SCAT Symptom Evaluation (symptom severity) 30.6 (24.9)

SCAT Symptom Evaluation (number of symptoms) 11.9 (6.7)

PCS (total score) 11.4 (10.3)

PCS helplessness (subdomain score) 4.7 (4.6)

TRAIT Anxiety Inventory (total score) 38.3 (14.0)

SD, standard deviation; f, female/m, male; y, yes/n, no; Headache Intensity, headache pain on a scale of 0, no pain to 10, worst pain; Headache Frequency,

percentage of days with headaches from TBI to enrollment; SCAT Symptom Evaluation (symptom severity), Sport Concussion Assessment Tool (SCAT-

5), total score calculated by adding all subscores (maximum is 132); SCAT Symptom Evaluation (number of symptoms), Sport Concussion Assessment

Tool (SCAT-5), total number of symptoms (maximum is 22); PCS, Pain Catastrophizing Scale.
aData is reported as frequency count and percentage for individuals with PTH (n¼ 43).

Table 2. Prediction accuracies for headache improvement at three months.

Prediction model CV AUC

Imaging

component p-value

Questionnaire

component p-value

Questionnaire 0.680 – 0.004

QuestionnaireþThickness 0.776 0.003 0.008

QuestionnaireþMean Curvature 0.794 0.003 0.014

QuestionnaireþVolume 0.548 0.003 0.037

QuestionnaireþArea 0.629 0.006 0.266

QuestionnaireþThicknessþMean Curvature 0.801 0.002 0.012

Result of the best performing model is bolded.
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Mean curvature model. Fifteen brain regions contributed

to the prediction of headache improvement, i.e., higher

mean curvature values were predictive of headache

non-improvement.

Cortical thickness model. Fourteen brain regions contrib-

uted to the prediction of headache improvement, i.e.,

greater thickness values were predictive of headache

improvement.
The top contributing regional estimates for mean

curvature and thickness included: superior, middle,

and inferior temporal, fusiform, inferior parietal,

and lateral occipital regions. The top contributing

regional estimates for mean curvature (but not thick-

ness) included: frontal (bilateral precentral, bilateral

rostral middle frontal, left superior frontal, left para-

central) and parietal (postcentral) regions, and the top

contributing regions for thickness (but not curvature)

included temporal (inferior temporal and transverse

temporal) and parietal (superior parietal and precu-

neus) regions.

Group differences for imaging components

The group comparison of thickness and curvature com-

ponents are visualized in Figure 4. PTHpatients without

headache improvement had significantly higher mean

curvature component (p¼ 0.002) and lower thickness

component (p< 0.001) than PTH patients with head-

ache improvement. Additionally, there were no signifi-

cant differences (p> 0.05) between the imaging

components of HCs and PTH patients who had head-

ache improvement at three months; whereas PTH indi-

viduals whose headaches did not improve had

significantly lower thickness component (p¼ 0.012)

and higher mean curvature component compared to

HCs (p¼ 0.001). These results show that components

found by PLS were helpful for distinguishing headache

improvement, and the direction of these components is

(b)(a)

rh_fusiform

Ih_fusiform
Ih_superiorparietal
rh_lateraloccipital

rh_transversetemporal
rh_precuneus

rh_middletemporal
lh_middletemporal
lh_inferiortemporal

rh_inferiorparietal
rh_inferiortemporal

Ih_lateraloccipitalIh_precentral

Mean Curvature Thickness

Ih_paracentral

rh_precentral

Ih_superiorfrontal

rh_superiortemporal
Ih_superiortemporal

Ih_middletemporal

Ih_inferiorparietal

Ih_inferiortemporal
rh_rostralmiddlefrontal

Ih_postcentral
rh_lateraloccipital

Ih_rostralmiddlefrontal
Ih_fusiform

rh_inferiorparietal
0.00 0.05 0.10 0.15 0.20 0.25 0.350.30

Feature contribution

0.00 0.05 0.10 0.15 0.20 0.25
Feature contribution

rh_middletemporal

rh_fusiform

Figure 2. PLS loadings of imaging measures significantly contributing to the (a) Curvature component and (b) Thickness component.
Measures are sorted in descending order by the magnitude of their contribution. Color blue indicates contributing in a positive
direction with respect to headache improvement, i.e. larger values are predicted with higher probability of headache improvement.
The color red indicates contributing in a negative direction with respect to headache improvement, i.e. larger values are predicted
with higher probability of headache non-improvement.

Table 3 Prediction accuracies for headache improvement at six months.

Prediction model CV AUC

Imaging component

p-value

Questionnaire component

p-value

Questionnaire 0.725 – 0.006

QuestionnaireþThickness 0.805 0.050 0.005

QuestionnaireþMean Curvature 0.731 0.387 0.006

QuestionnaireþVolume 0.710 0.588 0.006

QuestionnaireþArea 0.740 0.245 0.006

QuestionnaireþThicknessþMean Curvature 0.763 0.176 0.006

Result of the best performing model is bolded.

Mao et al. 7



consistent with the HC cohort whose data were not used
during the training of PLS.

Prediction accuracy robust to hyperparameters

Although only the first PLS component was used as
predictor in all models to reduce the risk of overfitting,
we conducted an experiment to investigate the extent
the prediction accuracy of headache improvement is
affected by the number of components. Results
showed that adding more components did not improve
prediction AUC for the three-month model; and in
the six-month model, the simplest model using only
one component achieved comparable prediction per-
formance compared to the best possible model
(Figure 5).

Functional regression to model headache trajectory

The functional regression model for predicting patients’
headache frequency trajectory over the course of three
months using the questionnaire component and thick-
ness, curvature, volume, and area components achieved
adjusted R2 of 0.498, 0.468, 0.497, and 0.465, respective-
ly. All questionnaire and imaging models outperformed
the questionnaire-only model which yielded adjusted R2

of 0.419. The estimated functional coefficients for thick-
ness and mean curvature models are shown in Figure 6.
The functional intercepts (Figures 6(a) and 6(d)) repre-
sent the expected evolution of headache frequency with
all predictors being zero, i.e. for a female, average-aged
patient enrolled zero days after mTBI and with the
thinnest thickness measures within the PTH cohort.

1 precentral (r,I)

Cortical Curvature

Cortical Thickness

2 paracentral (I)
3 superior frontal (I)
4 rostral middle frontal (r,I)
5 postcentral (I) 10 inferior temporal (I)

9 lateral occipital (r)
8 inferior parietal (r)
7 middle temporal (r,l)
6 fusiform (r,l)

10 inferior temporal (r,I)
9 lateral occipital (r,l)
8 inferior parietal (r,l)
7 middle temporal (r,l)
6 fusiform (r,l) 12 precuneus (r)

13 superior parietal (l)
14 superior temporal (r)
15 transverse temporal (r)

11 superior temporal (l)

Figure 3. Brain regions significantly contributing to the Curvature component (top) and Thickness component (bottom).
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The functional coefficients (Figures 6(b) and 6(e)) rep-

resent the relationship between headache frequency tra-

jectory and the imaging component over time. The

negative thickness functional coefficients imply that

patients with thinner brain structures were predicted to

have higher headache frequencies (Figure 6(c)). The pos-

itive mean curvature functional coefficient suggests that

patients with higher mean curvature tend to have more
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Figure 4. Boxplots and group comparison (two-sided t-test) of (a) Curvature component and (b) Thickness component for
individuals with PTH with and without headache improvement at three months post-enrollment. The imaging components found by
PLS were helpful to separate PTH patients who had headache improvement and who had not. Those who improved by three months
had baseline curvature and thickness measurements similar to healthy controls.
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Figure 5. Performance of prediction models of headache improvement at (a) three months and (b) six months post-enrollment using
different number of PLS components. The simplest model using only the first imaging component achieved the best or comparable to
the best performance.
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frequent headaches (Figure 6(f)). These positive and
negative directions are consistent with the results of
the prediction models. In both thickness and mean cur-
vature models, the magnitude of the coefficients
increased over time suggesting a relatively stronger rela-
tionship between imaging measures and headache fre-
quency at two months after enrollment, which may be
because headache patterns prior to two months are still
fluctuating for this cohort.

Discussion

For patients with PTH, baseline testing (between 0-59

days post-mTBI) which included structural imaging

and completion of three clinical questionnaires that

assessed psychosocial symptoms predicted headache

improvement at three months and at six months fol-

lowing mTBI with an accuracy of 0.801 and 0.805

AUC and adjusted R2of 0.498 for the headache
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Figure 6. Estimated functional coefficients of the thickness model: (a) time-varying intercept, (b) time-varying coefficient of the
thickness component, and (c) predicted headache frequency trajectory comparison for two hypothetical patients of average age,
female sex, and average enrollment time but different thickness measures. Estimated functional coefficients of the mean curvature
model: (d) time-varying intercept, (e) time-varying coefficient of the mean curvature component, and (f) predicted headache frequency
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measures. Headache frequency was measured as the percentage of days with headaches within each sliding seven-day window. 95%
confidence intervals of the coefficients are shown in dashed lines.

10 Cephalalgia



frequency trajectory during the first three months post-

enrollment.
The following regional estimates of mean curvature

and thickness were most predictive of headache
improvement including temporal (superior, middle,
and inferior temporal and fusiform), inferior parietal,
and lateral occipital regions. Regional estimates of
frontal lobe curvature (bilateral precentral, bilateral
rostral middle frontal, left superior frontal and left par-
acentral) but not frontal lobe thickness contributed to
the prediction accuracy. Cortical curvature is a mea-
sure of how the cortex folds in the surrounding space
and alterations in cortical curvature have been demon-
strated in several neurological disorders including
migraine and TBI (23–26). Results by King et al. (27)
showed higher cortical curvature in veterans with TBI
compared to heathy controls, resulting in steeper tra-
jectory in sulci and gyri in superior and inferior frontal,
precentral and superior and inferior temporal regions.
A study by Planchuelo-G�omez et al. (26) found higher
cortical curvature in patients with chronic and episodic
migraine relative to healthy controls in the left cingu-
late, right paracentral, right precuneus, and right later-
al occipital region and less cortical thickness in the
right and left inferior temporal and right fusiform
area. These results of less cortical thickness in migraine
and steeper cortical curvature in migraine and TBI are
in line with our current findings and may suggest
involvement of these regions in both mTBI and
headache.

Group comparison of component values indicated
the PLS was able to find a single-dimensional compo-
nent that is helpful for distinguishing individuals with
PTH improvement from those who did not have PTH
improvement. Additionally, p-values of the model coef-
ficients suggest that the questionnaire component was a
relatively stronger predictor of PTH improvement at
six months, whereas the imaging components were
stronger predictors for improvement at three months,
suggesting that structural measures can help predict
headache improvement during the acute phase after
mTBI whereas psychosocial measures from question-
naires are more predictive of headache improvement
during the chronic stage of mTBI.

The prediction of PTH persistence is an important
goal and several studies have made progress in eluci-
dating the neuromechanisms underlying PTH (28–31).
Naugle et al. (29) found that acute PTH pain intensity
and pain inhibitory capacity on the conditioned pain
modulation test predicted persistent PTH classification
as well as greater depression and pain catastrophizing
scores in PTH patients tested 1–2 weeks post-mTBI
that developed persistent PTH compared to those

who did not develop persistent PTH, which are in
line with our findings of psychosocial questionnaire
domain scores having utility for predicting PTH persis-
tence. Results by Lemme et al. (28) found higher scores
on self-reported symptoms of pain-perception and
altered functional connectivity using resting-state imag-
ing in regions including frontal, temporal, and cerebel-
lar regions, as well as sub-cortical regions including the
amygdala and nucleus accumbens in pediatric patients
that had persisting headache compared to those whose
headaches resolved after one-month post-mTBI.
Pediatric patients with persisting PTH compared to
those who had headache resolution had weaker func-
tional connectivity between the occipital pole and
frontal-parietal connectivity and stronger functional
connectivity between the frontal-parietal and salience
network. A study by Niu and colleagues (30) found
that connectivity strength between the periaqueductal
gray and regions of the default mode network (right
precuneus and right inferior parietal lobule) predicted
patients with persistent PTH three months after mTBI.
Holmes and colleagues (31) compared pediatric
patients with PTH to age-balanced healthy controls
to assess the accuracy of distinguishing individuals
with PTH from healthy controls using questionnaire
data and regional brain cortical and subcortical
volume measures (FreeSurfer version 5.3). Authors
reported the highest prediction accuracy score of 0.85
in a model that included three questionnaires (Pediatric
Pain Screening Test, Fear of Pain Questionnaire, Pain
Catastrophizing Scale) and regional brain volume
measures including the caudal middle frontal, cuneus,
entorhinal, fusiform, parahippocampal, temporal pole,
caudal anterior cingulate and superior temporal sulcus.

The study had several limitations. We purposely
enrolled individuals between 0-59 days post-mTBI to
achieve enrollment success. Within this two-month
range, individuals that were enrolled after a longer
interval post-mTBI are more likely to develop PTH
persistence compared to individuals that had an earlier
enrollment time post-mTBI. We tried to account for
this heterogeneity using enrollment time post-mTBI
as a covariate in the prediction models. Additionally,
four out of the 43 PTH patients did not have six-month
improvement status, which were due to loss of follow-
up or due to individuals not yet having completed their
six-month follow-up visit at the time of analysis.
Furthermore, despite the internal measures taken to
avoid overfitting, future studies using larger sample
size and an external test dataset should be used to val-
idate the findings and explore more complex models to
leverage the prediction power of high-dimensional
structural imaging measures.
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Conclusion

This study developed prediction models for the prog-
nosis of headache improvement/non-improvement for
patients with aPTH attributed to mTBI. Using ques-
tionnaire data only, the logistic regression yielded an
accuracy of 0.681 and 0.725 AUC for predicting
headache improvement at three and at six months
and the functional regression model for predicting
headache trajectory yielded an adjusted R2 of 0.419.
Results of our present study which included a larger

patient cohort show that combining questionnaire
with structural imaging data improved the accuracy
of headache improvement prediction at three months
and at six months to 0.801 and 0.805 AUC, and of
headache trajectory to adjusted R2 of 0.498. These
results suggest that structural measures of thickness
and curvature and targeted questions pertaining to
psychosocial symptoms following mTBI are useful
for predicting PTH improvement at three and six
months.

Clinical implications

• Patients with acute PTH who do not have headache improvement at three-months post-mTBI have less
cortical thickness and steeper brain curvature.

• Clinical questionnaire data and measures of brain structure accurately predicted headache improvement in
patients with PTH at three months following mTBI with an accuracy of 0.801 AUC.
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